543 research outputs found

    Chiral particle separation by a non-chiral micro-lattice

    Full text link
    We conceived a model experiment for a continuous separation strategy of chiral molecules (enantiomers) without the need of any chiral selector structure or derivatization agents: Micro-particles that only differ by their chirality are shown to migrate along different directions when driven by a steady fluid flow through a square lattice of cylindrical posts. In accordance with our numerical predictions, the transport directions of the enantiomers depend very sensitively on the orientation of the lattice relatively to the fluid flow

    The microwave cavity perturbation technique for contact-free and in situ electrical conductivity measurements in catalysis and materials science

    No full text
    We have developed a noncontact method to probe the electrical conductivity and complex permittivity of single and polycrystalline samples in a flow-through reactor in the temperature range of 20–500 °C and in various gas atmospheres. The method is based on the microwave cavity perturbation technique and allows the simultaneous measurement of microwave conductivity, permittivity and of the catalytic performance of heterogeneous catalysts without any need for contacting the sample with electrodes. The sensitivity of the method towards changes in bulk properties was proven by the investigation of characteristic first-order phase transitions of the ionic conductor rubidium nitrate in the temperature range between 20 and 320 °C, and by studying the temperature dependence of the complex permittivity and conductivity of a niobium(V)-doped vanadium-phosphorous-oxide catalyst for the selective oxidation of n-butane to maleic anhydride. Simultaneously, the catalytic performance was probed by on line GC analysis of evolving product gases making the technique a real in situ method enabling the noninvasive investigation of electronic structure–function relationships

    Do observations on surface coverage-reactivity correlations always describe the true catalytic process? A case study on ceria

    Get PDF
    In situ (operando) investigations aim at establishing structure-function and/or coverage-reactivity correlations. Herein, we investigated the gas-phase HCl oxidation (4HCl + O2 → 2Cl2 + 2H2O) over ceria. Despite its remarkable performance, under low oxygen over-stoichiometry, this oxide is prone to a certain extent to subsurface/bulk chlorination, which leads to deactivation. In situ Prompt Gamma Activation Analysis (PGAA) studies evidenced that the chlorination rate is independent of the pre-chlorination degree but increases at lower oxygen over-stoichiometry, while dechlorination is effective in oxygen-rich feeds, and its rate is higher for a more extensively pre-chlorinated ceria. Even bulk CeCl3 could be transformed into CeO2 under oxygen excess. Electron Paramagnetic Resonance experiments strongly suggested that oxygen activation is inhibited by a high surface chlorination degree. The coverages of most abundant surface intermediates, OH and Cl, were monitored by in situ infrared spectroscopy and PGAA under various conditions. Higher temperature and p(O2) led to enhanced OH coverage, reduced Cl coverage, and increased reactivity. Variation of p(HCl) gave rise to opposite correlations, while raising p(Cl2) did not induce any measurable increase in the Cl coverage, despite the strong inhibition of the reaction rate. The results indicate that only a small fraction of surface sites is actively involved in the reaction, and most of the surface species probed in the in situ observation are spectators. Therefore, when performing in situ steady-state experiments, a large set of variables should be considered to obtain accurate conclusions

    Quantitative Proteomic Approach Identifies Vpr Binding Protein as Novel Host Factor Supporting Influenza A Virus Infections in Human Cells

    Get PDF
    Influenza A virus infections are a major cause for respiratory disease in humans, which affects all age groups and contributes substantially to global morbidity and mortality. IAV have a large natural host reservoir in avian species. However, many avian IAV strains lack adaptation to other hosts and hardly propagate in humans. While seasonal or pandemic influenza A virus (IAV) strains replicate efficiently in permissive human cells, many avian IAV cause abortive non-productive infections in these hosts despite successful cell entry. However, the precise reasons for these differential outcomes are poorly defined. We hypothesized that the distinct course of an IAV infection with a given virus strain is determined by the differential interplay between specific host and viral factors. By using Spike-in SILAC mass spectrometry-based quantitative proteomics we characterized sets of cellular factors whose abundance is specifically up- or down-regulated in the course of permissive vs. non-permissive IAV infection, respectively. This approach allowed for the definition and quantitative comparison of about 3500 proteins in human lung epithelial cells in response to seasonal or low-pathogenic avian H3N2 IAV. Many identified proteins were similarly regulated by both virus strains, but also 16 candidates with distinct changes in permissive vs. non-permissive infection were found. RNAi-mediated knockdown of these differentially regulated host factors identified Vpr binding protein (VprBP) as pro-viral host factor since its down-regulation inhibited efficient propagation of seasonal IAV while over-expression increased viral replication of both seasonal and avian IAV. These results not only show that there are similar differences in the overall changes during permissive and non-permissive imfluenza virus infections, but also provide a basis to evaluate VprBP as novel anti-IAV drug target

    Nanoantennas for visible and infrared radiation

    Full text link
    Nanoantennas for visible and infrared radiation can strongly enhance the interaction of light with nanoscale matter by their ability to efficiently link propagating and spatially localized optical fields. This ability unlocks an enormous potential for applications ranging from nanoscale optical microscopy and spectroscopy over solar energy conversion, integrated optical nanocircuitry, opto-electronics and density-ofstates engineering to ultra-sensing as well as enhancement of optical nonlinearities. Here we review the current understanding of optical antennas based on the background of both well-developed radiowave antenna engineering and the emerging field of plasmonics. In particular, we address the plasmonic behavior that emerges due to the very high optical frequencies involved and the limitations in the choice of antenna materials and geometrical parameters imposed by nanofabrication. Finally, we give a brief account of the current status of the field and the major established and emerging lines of investigation in this vivid area of research.Comment: Review article with 76 pages, 21 figure

    Integrated Visualization of Human Brain Connectome Data

    Get PDF
    Visualization plays a vital role in the analysis of multi-modal neuroimaging data. A major challenge in neuroimaging visualization is how to integrate structural, functional and connectivity data to form a comprehensive visual context for data exploration, quality control, and hypothesis discovery. We develop a new integrated visualization solution for brain imaging data by combining scientific and information visualization techniques within the context of the same anatomic structure. New surface texture techniques are developed to map non-spatial attributes onto the brain surfaces from MRI scans. Two types of non-spatial information are represented: (1) time-series data from resting-state functional MRI measuring brain activation; (2) network properties derived from structural connectivity data for different groups of subjects, which may help guide the detection of differentiation features. Through visual exploration, this integrated solution can help identify brain regions with highly correlated functional activations as well as their activation patterns. Visual detection of differentiation features can also potentially discover image based phenotypic biomarkers for brain diseases

    Identification of New Alleles and the Determination of Alleles and Genotypes Frequencies at the CYP2D6 Gene in Emiratis

    Get PDF
    CYP2D6 belongs to the cytochrome P450 superfamily of enzymes and plays an important role in the metabolism of 20–25% of clinically used drugs including antidepressants. It displays inter-individual and inter-ethnic variability in activity ranging from complete absence to excessive activity which causes adverse drug reactions and toxicity or therapy failure even at normal drug doses. This variability is due to genetic polymorphisms which form poor, intermediate, extensive or ultrarapid metaboliser phenotypes. This study aimed to determine CYP2D6 alleles and their frequencies in the United Arab Emirates (UAE) local population. CYP2D6 alleles and genotypes were determined by direct DNA sequencing in 151 Emiratis with the majority being psychiatric patients on antidepressants. Several new alleles have been identified and in total we identified seventeen alleles and 49 genotypes. CYP2D6*1 (wild type) and CYP2D6*2 alleles (extensive metaboliser phenotype) were found with frequencies of 39.1% and 12.2%, respectively. CYP2D6*41 (intermediate metaboliser) occurred in 15.2%. Homozygous CYP2D6*4 allele (poor metaboliser) was found with a frequency of 2% while homozygous and heterozygous CYP2D6*4 occurred with a frequency of 9%. CYP2D6*2xn, caused by gene duplication (ultrarapid metaboliser) had a frequency of 4.3%. CYP2D6 gene duplication/multiduplication occurred in 16% but only 11.2% who carried more than 2 active functional alleles were considered ultrarapid metabolisers. CYP2D6 gene deletion in one copy occurred in 7.5% of the study group. In conclusion, CYP2D6 gene locus is heterogeneous in the UAE national population and no significant differences have been identified between the psychiatric patients and controls
    • …
    corecore